### XI + XII + IIT - JEE MAINS + ADVANCED / MEDICAL

*JEE Advanced 2018 is a national level entrance exam managed by the seven zonal Indian Institute of Technology (IITs) on rotation basis. Through this exam, candidates will get admission into IITs & ISM. This IIT JEE exam is the second state of JEE Main (Joint Entrance Examination). *

GOODWILL GATE2IIT offers weekdays and Weekend classroom programmes for the JEE Main and Advanced / Medical examinations. Two year comprehensive JEE/Medical coaching programme for students completing X std, One year JEE/Medical coaching programme for students completing XI std, One year JEE/Medical coaching programme for students completing XII std and, various correspondence courses for students who are unable to attend our regular classroom training programmes.

**Expert Faculty -**

Committed team of dedicated faculty members (Full Time & Part Time) who are only from IITs , IISc and PhD’s from premier institutes having huge experience in teaching IIT-JEE/Medical subjects

**In-Depth Course coverage -**

Subjects are taught from basic level and main focus is on strong concept building, the subject materials is detailed and focuses directly on exam pattern. The course plan is properly organised with each topic given relevant time for completion . The right combination of theory & numerical are given to help the students to crack IIT-JEE/Medical entrance exams.

**Personalized attention and performance assessment -**

Separate doubt clarifying sessions will be given in batch or personally till the satisfaction of the student. Post exam Counselling sessions will be given to the students clearing the respective entrance exam. Performance of each individual student will be tracked and all the steps needed for improvement will be taken accordingly.

Graduate Aptitude Test in Engineering(GATE) is a entrance test for to do higher education in India (M.E or M_TECH), This Graduate Aptitude Test in Engineering is organized by 7 IITs and IISC. GATE 2017 organized by IIT ROORKEE.THIS IS FIFTH TIME. GATE is conducted through the constitution of eight zones.

**JEE Advanced 2018 Exam Dates **

Here, we are providing tentative schedule of JEE Advanced exam dates 2018. Check important dates below:

Events | Dates (Tentative) |
---|---|

Online Registration Starts | 4th week of April 2018 |

Online Registration Closes | 1st week of May 2018 |

Admit Card Availability | 2nd week of May 2018 |

JEE Advanced (Paper 1 & Paper 2) | 3rd week of May 2018 (9 to 12 PM & 2 to 5 PM) |

Online display of ORS and scanned responses | Last week of May 2018 |

Answer Key Released | 1st week of June 2018 |

Receiving feedback from candidates on answer keys | 1st week of June 2018 |

Declaration of Result | 2nd week of June 2018 |

Architecture Aptitude Test (AAT) Online Registration Date | 2nd week of June 2018 |

Architecture Aptitude Test (AAT) Exam Date | 2nd week of June 2018 |

AAT Result Declaration Date | 3rd week of June 2018 |

Seat Allotment Starts | 3rd week of June 2018 |

__JEE ADVANCED 2018__

**Nationality:**

**Indian Citizen**of India can apply for this exam.**PIO/OCI**candidates can also apply.

**JEE Main 2018:**

- For JEE Advanced 2018, India nationals (including OCI/PIO)
**have to appear JEE Main**2018.

**Performance in JEE Main 2018:**

- Candidates should be among the
**top 2, 20,000**(including all categories) by securing positive marks in Paper 1 of JEE Main 2018.

**Age Criteria:**

**Age Limit:**Candidates should be**born on or after 1st October 1992**.**Relaxation:**There is**five year relaxation**for SC/ST/PwD categories. These candidates must be born on or after 1st October 1987.

**Number of Attempts:**

- Candidates must appear for JEE Advanced exam (IIT JEE Exam) a
**maximum of two times**in a consecutive years. - Candidates, those appeared in JEE Advanced 2017 for the first time, they are also eligible.

**Appearance in Class XII (or equivalent):**

- Candidates should appear for the 10+2 or equivalent examination for the first time in either year 2017 or 2018.
- Candidates, those 10+2 or equivalent examination result for the year 2015-2016 were announced after June 2016, they are also eligible to appear for JEE Advanced 2018.

**Earlier Admission at IITs:**

- Candidates should not been admitted in an IIT irrespective of whether or not they continued in the programme)
**or** - Candidates who are admitted to a preparatory programme in any of the IITs for the first time in 2017, they can apply for JEE Advanced 2018.
- Candidates, those have paid the seat acceptance fee but not accepted the seat are eligible to appear in the JEE Advanced 2018.

**Performance in 10+2 or Equivalent Examination:**

- Candidates have to score minimum
**75% aggregate marks**(65% in case of SC/ST/PwD category) in 10+2 or equivalent examination. - Candidates must be within the category-wise top 20 percentile of qualified candidates in their particular 10+2 or equivalent examination.
- Candidates, those appeared in 10+2 (or equivalent) examination in 2017 but reappeared in 2018, the best of two performances will be considered.

**JEE Advanced Exam Pattern
:**

The exam pattern is given here:

**JEE ADVANCED**

IThe eligibility for appearing JEE Main 2018 is given below:

**MATHEMATICS**

**Algebra**

Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.

Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots.

Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers.

Logarithms and their properties.

Permutations and combinations, Binomial theorem for a positive integral index, properties of binomial coefficients.

Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.

Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of probability of events using permutations and combinations.

##### Trigonometry

Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations.

Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle, inverse trigonometric functions (principal value only).

##### Analytical geometry

Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin.

Equation of a straight line in various forms, angle between two lines, distance of a point from a line; Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle.Equation of a circle in various forms, equations of tangent, normal and chord.

Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line. Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal.Locus Problems.

**Three dimensions: **Direction cosines and direction ratios, equation of a straight line in space, equation of a plane, distance of a point from a plane.

##### Differential calculus

Real valued functions of a real variable, into, onto and one-to-one functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.

Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions. Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions. Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions. Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, Rolle’s Theorem and Lagrange’s Mean Value Theorem.**Integral calculus**

Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, Fundamental Theorem of Integral Calculus.

Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves. Formation of ordinary differential equations, solution of homogeneous differential equations, separation of variables method, linear first order differential equations.##### Vectors

Addition of vectors, scalar multiplication, dot and cross products, scalar triple products and their geometrical interpretations.

**PHYSICS**

##### General>

Units and dimensions, dimensional analysis; least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using Vernier calipers and screw gauge (micrometer), Determination of g using simple pendulum, Young’s modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using u-v method, Speed of sound using resonance column, Verification of Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire using meter bridge and post office box.

**Mechanics**

Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform Circular motion; Relative velocity.

Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static and dynamic friction; Kinetic and potential energy; Work and power; Conservation of linear momentum and mechanical energy. Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions. Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion of planets and satellites in circular orbits; Escape velocity. Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid bodies. Linear and angular simple harmonic motions. Hooke’s law, Young’s modulus. Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its applications. Wave motion (plane waves only), longitudinal and transverse waves, superposition of waves; Progressive and stationary waves; Vibration of strings and air columns;Resonance; Beats; Speed of sound in gases; Doppler effect (in sound). Thermal physics: Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction in one dimension; Elementary concepts of convection and radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (Cv and Cp for monoatomic and diatomic gases); Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and work; First law of thermodynamics and its applications (only for ideal gases); Blackbody radiation: absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law.**Electricity and magnetism**

Coulomb’s law; Electric field and potential; Electrical potential energy of a system of point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines; Flux of electric field; Gauss’s law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.

Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy stored in a capacitor.

Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells; Kirchhoff’s laws and simple applications; Heating effect of current.

Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight wire, along the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a current-carrying wire in a uniform magnetic field.

Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving coil galvanometer, voltmeter, ammeter and their conversions.

Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC, LR and LC circuits with D.C. and A.C. sources.

##### Optics

Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.

Wave nature of light: Huygen’s principle, interference limited to Young’s double-slit experiment.

**Modern Physics**

Atomic nucleus; Alpha, beta and gamma radiations; Law of radioactive decay; Decay constant; Half-life and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in these processes.

Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and continuous X-rays, Moseley’s law; de Broglie wavelength of matter waves.

CHEMISTRY##### Physical Chemistry

**General topics:** Concept of atoms and molecules; Dalton’s atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept) involving common oxidation-reduction, neutralisation, and displacement reactions; Concentration in terms of mole fraction, molarity, molality and normality.

**Gaseous and liquid states:** Absolute scale of temperature, ideal gas equation; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Vapour pressure; Diffusion of gases.

**Atomic structure and chemical bonding:** Bohr model, spectrum of hydrogen atom, quantum numbers; Wave-particle duality, de Broglie hypothesis; Uncertainty principle; Qualitative quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals; Electronic configurations of elements (up to atomic number 36); Aufbau principle; Pauli’s exclusion principle and Hund’s rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond; Polarity in molecules, dipole moment (qualitative aspects only); VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).

**Energetics:** First law of thermodynamics; Internal energy, work and heat, pressure-volume work; Enthalpy, Hess’s law; Heat of reaction, fusion and vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion of spontaneity.

**Chemical equilibrium:** Law of mass action; Equilibrium constant, Le Chatelier’s principle (effect of concentration, temperature and pressure); Significance of ΔG and ΔG° in chemical equilibrium; Solubility product, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.

**Electrochemistry:** Electrochemical cells and cell reactions; Standard electrode potentials; Nernst equation and its relation to ΔG; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration cells.

**Chemical kinetics:** Rates of chemical reactions; Order of reactions; Rate constant; First order reactions; Temperature dependence of rate constant (Arrhenius equation).

**Solid state:** Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ), close packed structure of solids (cubic), packing in fcc, bcc and hcp lattices; Nearest neighbours, ionic radii, simple ionic compounds, point defects.

**Solutions:** Raoult’s law; Molecular weight determination from lowering of vapour pressure, elevation of boiling point and depression of freezing point.

**Surface chemistry:** Elementary concepts of adsorption (excluding adsorption isotherms); Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants and micelles (only definitions and examples).

**Nuclear chemistry:** Radioactivity: isotopes and isobars; Properties of α, β and γ rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to proton-neutron ratio; Brief discussion on fission and fusion reactions.

##### Inorganic Chemistry

Isolation/preparation and properties of the following non-metals: Boron, silicon, nitrogen, phosphorus, oxygen, sulphur and halogens; Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.

**Preparation and properties of the following compounds:** Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium; Boron: diborane, boric acid and borax; Aluminium: alumina, aluminium chloride and alums; Carbon: oxides and oxyacid (carbonic acid); Silicon: silicones, silicates and silicon carbide; Nitrogen: oxides, oxyacids and ammonia; Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine; Oxygen: ozone and hydrogen peroxide; Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate; Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides.

**Transition elements (3d series):** Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin-only magnetic moment; Coordination compounds: nomenclature of mononuclear coordination compounds, cis-trans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).

**Preparation and properties of the following compounds:** Oxides and chlorides of tin and lead; Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+; Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate.

**Ores and minerals:**Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminium, zinc and silver.

**Extractive metallurgy:** Chemical principles and reactions only (industrial details excluded); Carbon reduction method (iron and tin); Self reduction method (copper and lead); Electrolytic reduction method (magnesium and aluminium); Cyanide process (silver and gold).

**Principles of qualitative analysis:** Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), sulphate and sulphide.

**Organic Chemistry**

Concepts: Hybridisation of carbon; Sigma and pi-bonds; Shapes of simple organic molecules; Structural and geometrical isomerism; Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded); IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono-functional and bi-functional compounds); Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation; Keto-enol tautomerism; Determination of empirical and molecular formulae of simple compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids; Inductive and resonance effects on acidity and basicity of organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals.

**Preparation, properties and reactions of alkanes:** Homologous series, physical properties of alkanes (melting points, boiling points and density); Combustion and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and decarboxylation reactions.

**Preparation, properties and reactions of alkenes and alkynes:** Physical properties of alkenes and alkynes (boiling points, density and dipole moments); Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination); Reactions of alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions; Electrophilic addition reactions of alkenes with X2, HX, HOX (X=halogen) and H2O; Addition reactions of alkynes; Metal acetylides.

**Reactions of benzene:** Structure and aromaticity; Electrophilic substitution reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation; Effect of o-, m- and p-directing groups in monosubstituted benzenes.

**Phenols:** Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tieman reaction, Kolbe reaction.

**Characteristic reactions of the following (including those mentioned above):** Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of alcohols into aldehydes and ketones; Ethers:Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine substitution).

**Carbohydrates:** Classification; mono- and di-saccharides (glucose and sucrose); Oxidation, reduction, glycoside formation and hydrolysis of sucrose.

**Amino acids and peptides:** General structure (only primary structure for peptides) and physical properties.

**Properties and uses of some important polymers:** Natural rubber, cellulose, nylon, teflon and PVC.

**Practical organic chemistry:** Detection of elements (N, S, halogens); Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro; Chemical methods of separation of mono-functional organic compounds from binary mixtures.

Prateek sir has been pivotal in helping me to understand the topics from the scratch. His patience and ability to teach people shows through. he is always ready to clear my concepts. I used to look forward to his classes since he made our concepts crystal clear. He also gave us many tips for the Gate exam and motivated is immensely. I am very grateful that he taught us. Thank u so much!!